Can misalignments in your spine affect your energy and metabolism?
Bad posture, which is usually the side effect of spinal misalignment, can also cause our body to waste energy. The muscles and ligaments in our spine are specifically designed so that normal/correct posture is an efficient energy consuming process. The human body was designed to conserve energy, and conserving energy is the body’s number one goal in order to survive. By having to hold an abnormal position day in and day out, more energy (ATP) is needed to stabilize and move the spine and extremities. This creates a problem with our energy metabolism, and sets the stage for chronic disease.
Poor posture and spinal misalignments abnormally stretches and contorts the spinal cord. A study by Yamada et al. observed that when traction was applied to the end of the spinal cord in dogs, derangement of neural tissue metabolism was seen due to the longitudinal tensile stress. More specifically, it was the oxidative metabolism of mitochondria that was hampered. The cells that make up nerve tissue rely solely on oxidative metabolism for energy; therefore any alteration in the efficiency of this process in the mitochondria is likely to lead to progressive neuronal dysfunction. To put this in laymen’s terms, tension on the spinal cord interrupts nerve tissue metabolism, which disrupts transmission of nerve signals to organs, muscles, and joints in the body. Prolonged tension on the spinal cord can cause nerve damage leading to dysfunction and chronic disease. Lower your risk of chronic disease and make sure your spine is in proper alignment, today!
References:
Harrison et al. A Review of Biomechanics of the Central Nervous System-Part II: Spinal Cord Strains from Postural Loads. Journal of Manipulative and Physiological Therapeutics. 22(5). 1999.
Breig A. Adverse Mechanical Tension in the central nervous system: analysis of the cause and effect-relief by functional neurosurgery. New York (NY): John Wiley and Sons; 1978.
Cusick J, Myklebust J, Zyvoloski M, Sances A, Houterman C, Larson S. Effects of vertebral column distraction in the monkey. J Neurosurg. 1982;57:651–659
Yamada S, Iacono R, Andrade T, Mandybur G, Yamada B. Pathophysiology of tethered cord syndrome. Neurosurg Clin N Am. 1995;6:311–323
Fujita Y, Yamamoto H. An experimental study on spinal cord traction effect. Spine. 1989;14:698–705
Naito M, Owen J, Bridwell K, Sugioka Y. Effects of distraction on physiologic integrity of the spinal cord, spinal cord blood flow, and clinical status. Spine. 1992;17:1154–1158
Harrison et al. A Review of Biomechanics of the Central Nervous System- Part III: Spinal Cord Stresses from Postural Loads and Their Neurologic Effects. Journal of Manipulative and Physiological Therapeutics. 22(6). 1999.